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ABSTRACT: It is shown by both analytical methods and numerical simulations that ex-
tremely long living spherically symmetric oscillons appear in virtually any real scalar field
theory coupled to a massless dilaton (DS theories). In fact such “dilatonic” oscillons are
already present in the simplest non-trivial DS theory — a free massive scalar field coupled
to the dilaton. It is shown that in analogy to the previously considered cases with a single
nonlinear scalar field, in DS theories there are also time periodic quasibreathers (QB) as-
sociated to small amplitude oscillons. Exploiting the QB picture the radiation law of the
small amplitude dilatonic oscillons is determined analytically.
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1 Introduction

Long-living, spatially localized classical solutions in field theories containing scalar fields
exhibiting nearly periodic oscillations in time — oscillons — [1]-[16] have attracted con-
siderable interest in the last few years. Oscillons closely resemble “true” breathers of the
one-dimensional (D = 1) sine-Gordon (SG) theory, which are time periodic and are expo-
nentially localized in space, but unlike true breathers they are continuously losing energy by
radiating slowly. On the other hand oscillons exist for different scalar potentials in various
spatial dimensions, in particular for D = 1,2, 3. Just like a breather, an oscillon possesses
a spatially well localized “core”, but it also has a “radiative” region outside of the core.
Oscillons appear from rather generic initial data in the course of time evolution in an im-
pressive number of physically relevant theories including the bosonic sector of the standard
model [17]-[20]. Moreover they form in physical processes making them of considerable
importance [21]-[28]. In a series of papers, [12, 29]-[31], it has been shown that oscillons
can be well described by a special class of exactly time-periodic “quasibreathers” (QB).
QQBs also possess a well localized core in space (just like true breathers) but in addition



they have a standing wave tail whose amplitude is minimized. At this point it is important
to emphasize that there are (infinitely) many time periodic solutions characterized by an
asymptotically standing wave part. In order to select one solution, we impose the condition
that the standing wave amplitude be minimal. This is a physically motivated condition,
which heuristically should single out “the” solution approximating a true breather as well
as possible, for which this amplitude is identically zero. The amplitude of the standing
wave tail of a QB is closely related to that of the oscillon radiation, therefore its computa-
tion is of prime interest. It is a rather non-trivial problem to compute this amplitude even
in one spatial dimensional scalar theories [30, 32]. In the limit when the core amplitude
is small, we have developed a method to compute the leading part of the exponentially
suppressed tail amplitude for a general class of theories in various dimensions [31].

In this paper we show that oscillons also appear in rather general (real) scalar field
theories coupled to a (massless) dilaton field (DS theory). Dilaton fields appear naturally
in low energy effective field theories derived from superstring models [33—-35] and the study
of their effects is of major interest. As the present study shows, the coupling of a dilaton
even to a free massive scalar field, referred to as the dilaton-Klein-Gordon (DKG) the-
ory, which is the conceivably simplest non-trivial DS theory, has some rather remarkable
consequences. This simple DKG theory already admits QBs and as our numerical investi-
gations show from generic initial data small amplitude oscillons evolve. We concentrate on
solutions with the simplest spatial geometry — spherical symmetry. We do not think that
considering spherically symmetric configurations is a major restriction since non-symmetric
configurations are expected to contain more energy and to evolve into symmetric ones [25].
The dilatonic oscillons are very robust and once formed from the initial data they do not
even seem to radiate their energy, hence their lifetime is extremely long (not even detectable
by our numerical methods).

Our means for constructing dilatonic oscillons will be the small amplitude expansion,
in which the small parameter, ¢, determines the difference of oscillation frequency from
the mass threshold. The small amplitude oscillons of the DKG theory appear to be stable
in dimensions D = 3,4, unstable in D = 5,6, and their core amplitude is proportional to
2. This is to be contrasted to self-interacting scalar theories whose oscillons are stable in
D = 1,2, unstable in D = 3, and their core amplitude is proportional to €. The master
equations determining oscillons to leading order in the small amplitude expansion turn out
to be the Schrodinger-Newton (SN) equations. The main analytical result of this paper is
the analytic computation of the amplitude of the standing wave tail of the dilatonic QBs
for any dimension D, and thereby the determination of the radiation law and the lifetime
of small amplitude oscillons in DS theories. The used methods have been developed in
refs. [30, 32, 36, 37] and [31].

The above results, namely the stability properties and the SN equations playing the
role of master equation, show striking similarity to those obtained in the Einstein-Klein-
Gordon (EKG) theory, i.e. for a free massive scalar field coupled to Einstein’s gravity,
where also stable, long living oscillons (known under the name of oscillating soliton stars,
or more recently oscillatons) have been found and investigated in many papers [38]-[44].



2 The scalar-dilaton system

The action of a scalar-dilaton system is

A= / dt 4P B(amof + %(aucp)? e U(@)} , (2.1)

where ¢ is the dilaton field and @ is a scalar field with self interaction potential U(®).

The energy corresponding to the action (2.1) can be written as

E= / g, =@+ (@2 + @) + 019)] + e THU@),  (22)

where £ denotes the energy density. In the case of spherical symmetry

p= [T D/;/l;l[(at<1>>2+<ar<1>>2+<atso>2+<arso>2+2eWU(@)}- 23)

We assume that the potential can be expanded around its minimum at ® = 0 as

= Ok
_Zk+1

k=1

(@) =3 grot, (2.4)
k=1

where gy, are real constants. For a free massive scalar field with mass m the only nonzero

coefficient is g1 = m?.

If gor = 0O for integer k the potential is symmetric around its
minimum. In that case, as we will see, for periodic configurations the Fourier expansion of
® in ¢t will contain only odd, while the expansion of ¢ only even Fourier components. For

spherically symmetric systems the field equations are

PP 9?d D-—109

— o, 26kp 7!
~ o0 + 92 + o, =€ U'(o), (2.5)
32<p ¢ D-—1 [ ok
92 + 572 o = —2Kke U(®). (2.6)

Since g1 = m is intended to be the mass of small excitations of ® at large distances, we
look for solutions satisfying ¢ — 0 for r — co. Finiteness of energy also requires & — 0 as
r — o0o. Rescaling the coordinates as t — t/m and r — r/m we first set g; = m? = 1. Then
redefining ¢ — ¢/(2k) and ® — ®/(2k) and appropriately changing the constants g we
arrange that 2k = 1. If for some reason we obtain a solution for which ¢ tends to a nonzero
constant at infinity then the dilatation symmetry of the system allows us to shift ¢ and
rescale the coordinates so that it is transformed to a solution satisfying ¢ — 0 for r — oo.

An important feature of a localized dilatonic configuration is its dilaton charge, Q.
It can be defined for almost time-periodic spherically symmetric configurations like oscil-
lons as:

p~Qri P for r—ooin D # 2 (2.7)
pxQInr for r—ooinD =2. (2.8)



3 The small amplitude expansion

In this section we will construct a finite-energy family of localized small amplitude solutions
of the spherically symmetric field equations (2.5) and (2.6) which oscillate below the mass
threshold [36]. It will be shown that such solutions exist for 2 < D < 6. The subtleties
of the case D = 6 will be dealt with in subsection 3.5. The result of the small amplitude
expansion is an asymptotic series representation of the core region of a quasibreather or
oscillon, but misses a standing or outgoing wave tail whose amplitude is exponentially small
with respect to the core. The amplitude of the tail will be determined in section 5.

We are looking for small amplitude solutions, therefore we expand the scalar fields, ¢

and @, in terms of a parameter ¢ as

o0 o0
<p:25k<pk, @:ngcbk, (3.1)
k=1 k=1

and search for functions ¢ and @, tending to zero at r — oo. The size of smooth
configurations is expected to increase for decreasing values of e, therefore it is natural to
introduce a new radial coordinate by the following rescaling

p=cer. (3.2)

In order to allow for the & dependence of the time-scale of the configurations a new time
coordinate is introduced as
T=w(e)t. (3.3)

Numerical experience shows that the smaller the oscillon amplitude is the closer its fre-
quency becomes to the threshold w = 1. The function w(e) is assumed to be analytic near
w = 1, and it is expanded as

wie) =1+ iskwk . (3.4)
k=1

We note that there is a considerable freedom in choosing different parametrisations of
the small amplitude states, changing the actual form of the function w(e). The physical
parameter is not € but the frequency of the periodic states that will be given by w. After
the rescalings egs. (2.5) and (2.6) take the following form

0?d 0?d D—10% =
— w? 2 2 — =¥ |d ol 3.5
WS +e 9 +e o Op e < +kz_29k ) (3.5)
0 0% D —10¢ 1 = g
—2 2 2 X e | —o2 B _phtl) 3.6
Wigy e 8p2+€ P e 5 +kz_:k+1 (3.6)

Substituting the small amplitude expansion (3.1) into (3.5) and (3.6), to leading ¢

order we obtain , ,
0°® 071
—— 4+ P =0
or? + ’ or?

~0. (3.7)



Since we are looking for solutions which remain bounded in time and since we are free to
shift the origin 7 = 0 of the time coordinate, the solution of (3.7) can be written as

®1(1,p) = Pr(p)cost, @17, p) =p1(p) (3.8)

where Pj(p) and p;(p) are some functions of the rescaled radial coordinate p.
The &2 terms in the expansion of (3.6) yield

82302 1

52 = ZP12 [1 4 cos(27)] . (3.9)
This equation can have a solution for ¢o which remains bounded in time only if the time
independent term in the right hand side vanishes, implying P, = 0 and consequently
®; = 0. Then the solution of (3.9) is @2(7, p) = p2(p). The £? terms in (3.5) yield

5%,
or2

+®y=0. (3.10)

Since &1 = 0 we are again free to shift the time coordinate, and the solution is ®o(7, p) =
Py(p) cos T.
The &3 order terms in the expansion of (3.6) give
Py dpr | D—1dp

= —_—. 3.11
or? dp? * p dp (3:.11)

In order to have a solution for ¢3(7, p) that remains bounded in time, the right hand side
must be zero, yielding p1(p) = p11 + p12p>~ P when D # 2 and pi(p) = p11 + p12Inp for
D = 2, with some constants p;; and pia. Since we look for bounded regular solutions
tending to zero at p — oo, we must have p;; = p12 = 0. As we have already seen that
®; = 0, this means that the small amplitude expansion (3.1) starts with £? terms. The
solution of (3.11) is then 3(7, p) = p3(p). The &3 order terms in the expansion of (3.5) give

PRk
a 52

This equation can have a solution for ®3 which remains bounded in time only if the res-

+ &3 —wiPacosT =0. (3.12)

onance term proportional to cos 7 vanishes, implying w; = 0. After applying an > order
small shift in the time coordinate, the solution of (3.12) is ®3(7, p) = P3(p) cos 7. Continu-
ing to higher orders, the basic frequency sin 7 term can always be absorbed by a small shift
in 7. It is important to note that after transforming out the sin7 terms no sin(k7) terms
will appear in the expansion, implying the time reflection symmetry of ® and ¢ at 7 = 0.

3.1 The Schrédinger-Newton equations
The ¢ terms in the expansion of (3.5) and (3.6) yield the differential equations

92d, d’P, D-1dP,
W—Hh = e + o dp + (p2 + wa)Po| cos T — —g2P2 [14 cos(27)], (3.13)
Doy d*ps D—1dpy 1 _,
= — +-F[1 27)]|. 14
T = TR o T P 1+ cos(2r) (3.14)



The function ®4(7, p) and @4(7, p) can remain bounded only if the cos T resonance terms
in (3.13) and the time independent terms in (3.14) vanish,
d*P, D—1dP,
—_— P,=0 3.15
dp2 + P dp +(p2+WQ) 2 B ( )
d2p2 D—-1 dp2 1

+ P2 =0. 3.16

Then the time dependence of ®4(7,p) and @4(7, p) is determined by (3.13) and (3.14) as

D4(7, p)=Py(p) cos T—l—égng [cos(27)—3] , 04(T, p) :p4(p)—%P2(p)2 cos(27). (3.17)

Here we see the first contribution of a nontrivial U(®) potential, the term proportional to
g2 in ®4. If (and only if) the potential is non-symmetric around its minimum, even Fourier
components appear in the expansion of .

Introducing the new variables

1
S = §P2, s =po+wsy, (3.18)

(3.15) and (3.16) can be written into the form which is called the time-independent
Schrodinger-Newton (or Newton-Schrodinger) equations in the literature:

d’S D—-14dS

— +—— — 455 =0, 3.19

02 + o dp +s (3.19)

d’>s D —1ds

—t———+5*=0. 3.20

w2 T d (3.20)
We look for localized solutions of these equations, in order to determine the core part of
small amplitude oscillons to a leading order approximation in €. The main features of the
solutions depend on the number of spatial dimensions D. For D > 6 positive monotonically
decreasing solutions necessarily satisfy s = .S, they tend to zero, furthermore, the Lane-

Emden equation holds [45]

dQs%_D—lds%_2 0 (3.21)

— +—— —+5=0. .

dp? p dp
For D > 6 solutions are decreasing as 1/p? for large p, consequently they have infinite
energy. It can also be shown that solutions of the original Schrodinger-Newton system
with s # S, and a necessarily oscillating scalar field, have infinite energy, hence there is
no finite energy solution for D > 6. For D = 6 the explicit form of the asymptotically
decaying solutions of (3.21) are known

2402
s=45=——" (3.22)
(1+a?p?)

where « is any constant. Since the replacement of ® with —® and a simultaneous reflection
of the potential around its minimum is a symmetry of the system, we choose the positive
sign for S in (3.22). For D = 6 the total energy remains finite.



If D < 6, then localized solutions have the property that for large values of p the
function S tends to zero exponentially, while s behaves as s ~ sg + s1p>~ P for D # 2 and
as s & 5o + sy Inp for D = 2, where sg and s; are some constants. Since we are interested
in localized solutions we assume 2 < D < 6. From (3.19) it is apparent that exponentially
localized solutions for S can only exist if s tends to a negative constant, i.e. sg < 0. In this
case the localized solutions of the Schrédinger-Newton (SN) equations (3.19) and (3.20)
can be parametrized by the number of nodes of S. The physically important ones are
the nodeless solutions satisfying S > 0, since the others correspond to higher energy and
less stable oscillons.

Motivated by the asymptotic behaviour of s, if D # 2 it is useful to introduce the

variables b
-1
P ds 2—D
= = =5 — ) 3.23
H=5"Day VTETPH (3.23)
In 2 < D < 6 dimensions these variables tend exponentially to the earlier introduced
constants
lim p = sy, lim v = sg. (3.24)
p—00 p—00

Then the SN equations can be written into the equivalent form

dp  pP7h
hatind S2 =0 3.25
i 2D : (3.25)
dv P 2
—+——5"=0 3.26
i D2 : (3.26)

25 D-—1dS .
- - =0. .2
i + Py +w+p"p)S=0 (3.27)

The SN equations (3.19) and (3.20) have the scaling invariance
(S(0),5(0)) — (A2S(A), \25(Mp)). (3.28)

If 2 < D < 6 we use this freedom to make the nodeless solution unique by setting s = —1.
At the same time we change the & parametrization by requiring

we=—1 for 2< D <6, (3.29)

ensuring that the limiting value of ¢ vanishes to 2 order. Going to higher orders, it can
be shown that one can always make the choice w; = 0 for i > 3, thereby fixing the ¢

parametrization, and setting

w=1v1-—¢2 for 2< D <6. (3.30)

If D = 6, since both s and S tend to zero at infinity, we have no method yet to fix the value

of a in (3.22). Moreover, in order to ensure that ¢ tends to zero at infinity we have to set

wp=0 for D=6. (3.31)



3.2 Absence of odd ¢ powers in the expansion

Calculating the €® order equations from (3.5) and (3.6) and requiring the boundedness of
®5 and @5 we obtain a pair of equations for P; and ps:

d’P; D —1dP;

d,O2 + T d—p + (p2 +W2)P3 +P2(p3 +w3) =0, (3‘32)
d? D—-14d 1
%*T%Jﬁ&&:o' (3.33)

These equations are solved by constant multiples of
dP. d,
Py =2P, + Pd—; ; p3tws=2(p2twr)+ Pdipz ; (3.34)

corresponding to the scaling invariance (3.28) of the SN equations. In D > 2 dimensions
ps given by (3.34) tends to w3 — 2 for large p. Since we are looking for solutions for which
 tends to zero asymptotically, after choosing ws = 0 we can only use the trivial solution
P3; = p3 = 0. The important consequence is that ®3 = ¢3 = 0. Going to higher orders
in the £ expansion, at odd orders we get the same form of equations as (3.32) and (3.33),
consequently, all odd coefficients of ¢}, and ¢ can be made to vanish. Instead of the more
general form (3.1) we can write the small amplitude expansion as

o0 [e.e]
p=> o, b= by, (3.35)
k=1 k=1

3.3 Higher orders in the ¢ expansion

The €5 order equations, after requiring the boundedness of ®g and g, yield a pair of
equations for P, and py:

d’Py, D-—1dpP,

+————— + (p2 +w2) Py + Pa(ps + wy
i o ( ) ( )
1 1 5 3
—§p%P2 — ﬁpg’ + (Egg — Zg3> P =0, (3.36)
d’ps D—1dps 1 1
d—I02+Td—p+§P2P4_Zp2P22:O' (3'37)

This is an inhomogeneous linear system of differential equations with nonlinear, asymp-
totically decaying source terms given by the solutions of the SN equations. Since the
homogeneous terms have the same structure as in (3.32) and (3.33), one can always add
multiples of

h) (h

dP. d
P, :2P2+Pd—p27 p4)+w4:2(1?2+w2)+ﬂdip2, (3.38)

to a particular solution of (3.36) and (3.37). If 2 < D < 6 we are interested in solutions for

2~D with some constants g

which at large radii Py decays exponentially, and py ~ qo + q1p
and ¢;. We use the homogeneous solution (3.38) to make gp = 0. Since similar choice can
be made at higher € orders, this will ensure that the limit of ¢ will remain zero at p — oco.
We note that, in general, it is not possible to make ¢; also vanish, implying a nontrivial €

dependence of the dilaton charge Q.



The resulting expressions for the original ® and ¢ functions are

1
d = 2Pycost + ¢t {P4 cos T + 6921322 [cos(2T) — 3]} + 86{136 COST

pP3 16 dPy\ >
+ﬁ (1 + 395 + 8g3> cos(37) — g2 | PaPy — (p2 + w2) P3 + <%> (3.39)
dPy\
—1—% 3PPy — (pa + wg)P22 — <d—p2> cos(27-)} + (’)(88)7

16 32 P

P 1 P \*
¢ = e2pytet [ZM — 2 cos(27')} +e {pe — — |4Py Py — (pa+wo)P3 — <d—2> ] cos(27)

1
—1—5—4921323 [9cosT — cos(37')]} +O(e%), (3.40)
where the functions P; and ps are determined by the SN equations (3.15) and (3.16), Py

and p4 can be obtained from (3.36) and (3.37), furthermore, the equations for Ps and pg
can be calculated from the % order terms as

P; D —1dPs P
el el R P P2 p
e + o dp + (p2 + w2) Ps + (ps + we) 2+<p4+uJ4 2) A
3 5, 9 3 49, 3 ;
- <3—2 292+493> P3Py — paPopy + <64 9 93 + gs) p2 Py (3.41)

117 1 19 dps\ 2
— P, P, + P, —¢) (=) =0
+<64 992>w22+6p22+ 2(64+992><dp> ’

d’ps D —1dps 1 1., 1
—— 4+ —— — 4+ P, Ps+ —-P; — =p2 PP,
dp2+ , d,o+ 26+44 o P22t
Py 11 3
——P Pi+=2(=-—g =0. (342
2P4+8P2 2+16 <8 g %2t g3> (3.42)
We remind the reader that the only non-vanishing wy for 2 < D < 6 is wy = —1, and we

will show in subsection 3.5, that in general, for D = 6 the only nonzero component is wy.
The above expressions, especially those for ® and ¢, simplify considerably for symmetric
U(®) potentials, in which case g, = 0.

3.4 Free scalar field in 2 < D < 6 dimensions

If ® is a free massive field with potential U(®) = m2®2/2, after scaling out m and x no
parameters remain in the equations determining P; and p;. The spatially localized nodeless
positive solution of the ordinary differential equations (3.15), (3.16), and the corresponding
solution of (3.36), (3.37), (3.41) and (3.42) can be calculated numerically. For D = 3 the
obtained curves are shown on figures 1 and 2. The obtained central values of P, and p;
for i = 2,4,6 in D = 3,4,5 are collected in table 1. The chosen central values make all
functions P; and p;, and consequently ®; and ;, tend to zero for p — oo. Although fori > 4
P; and p; are not monotonically decreasing functions, their central values represent well the
magnitude of these functions. Generally, the validity domain of an asymptotic series ends



Py

10 12

Figure 1. The first three Py functions for the free scalar field case in D = 3 spatial dimensions.

Pk

Figure 2. The p; functions for the free scalar field case in D = 3 dimensions.

D=3 D=1 D=5

Poe | 2.04299 | 7.08429 | 28.0399
p2c | 1.93832 | 4.42976 | 14.90729
Py | 0.658158 | -5.93174 | -348.868
pac | 0.686532 | -4.08270 | -200.353
Ps. | 0.557141 | 27.3950 | 9532.72
pee | 0.541339 | 17.9090 | 5500.18

Table 1. Central values of the first three functions P; and p; for the free scalar field in 3, 4 and 5

spatial dimensions.

,10,



where a higher order term starts giving larger contributions than previous order terms. For
D = 3 the sixth order € expansion can be expected to be valid even for as large parameter
values as € = 1. For D = 4 this domain is € < 0.7, while for D = 5 it decreases to ¢ < 0.22.

3.5 % order for D =6

As we have already stated in subsection 3.1, if D = 6 then wy = 0, s = 5 and the explicit
form of the solution of the SN equations is given by (3.22). Introducing the new variables
z and Z by

1 1
P4:§(22+z), p4+w4:§(Z—z), (3.43)

equations (3.36) and (3.37) decouple,

d?z 5 dz 3

P +;d—p —sz+Zﬂls3 =0, (3.44)
2z 5dZ 9
T 257 — = = 3.45
dp2 + P dp + 2s 4/328 7 ( )

where the constants (1 and (9 are defined by the coeflicients in the potential as

80

B = 1+ 63 — 803, (3.46)
80 , 8
Bo=1-2g5+ 305 (3.47)

For a free scalar field with U(®) = ®2/2 we have 3; = 32 = 1. The general regular solution
of (3.44) can be written in terms of the (complex indexed) associated Legendre function P as

_ 1446104 (14 + 6a2p% + op) ) P2 1—a?p?
13(1 + a2p?)* a2p? (iv23-1)/2 \ 1 +a2p?)

(3.48)

where C] is some constant. The limiting value at p — 00 is 200 = —C cosh(mv/23/2) /7 ~
—297.495 C. The regular solution of (3.45) is

_ 3888320t (1 — a?p?)

In(1 + a?p? 3.49
ey e G (3.49)
324ﬂ2a6p2(220 +100a?p? — 16a*p* — ap%) ‘e a?p? —1
35(1 + a2p?)? “(2p? +1)3°
The limiting value at p — 00 is Zoo = —32432a*/35, independently of Cs. Since P; must

tend to zero, according to (3.43), 2o, = 648320 /35, fixing the constant Cy. Since the mass
of the field @ is intended to remain m = 1, the limit of p4 also has to vanish, giving

324
wy = ——ﬂga (3.50)

This expression is not enough to fix wy yet, since « is a free parameter. If G5 > 0 then it is
reasonable to use (3.50) to set wy = —1, thereby fixing the free parameter « in the £2 order
component of ® and ¢. The change of the so far undetermined constant Cs corresponds to
a small rescaling of the parameter « in the expression (3.22). Its concrete value will fix the
coefficient wg in the expansion of the frequency. The homogeneous parts of the differential
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D=3 | D=4 | D=5
s1 | 3.90533 | 7.69489 | 10.4038
Ly | 88.0985 | 607.565 | 1642.91
FEq | 123.576 | 2522.10 | 31374.2

Table 2. The numerical values of s;, Fy and E; in 3, 4 and 5 spatial dimensions.

equations at higher € order will have the same structure as those for P, and py. Choosing
the appropriate homogeneous solutions all higher wy components can be set to zero, yielding

w=vV1—¢* for D=6 if (2 >0. (3.51)

This expression is valid for the free scalar field case with potential U(®) = ®2/2 in D = 6,
since then (3 = 1. For certain potentials 32 < 0, and one can use (3.50) to set wy = 1.
This case is quite unusual in the sense that the frequency of the oscillon state is above the
fundamental frequency m = 1. In the very special case, when fy = 0 the frequency differs

6

from the fundamental frequency only in €° or possibly higher order terms.

3.6 Total energy and dilaton charge of oscillons

Substituting (3.39) and (3.40) into the expression (2.3) of the total energy, we get

F = E47DE0 + EGiDEl + 0(5871)) , (3.52)
where
D/2 ) Do1o aD/2 oo Dot ( ) ( )
Eozi/ dpp P s Elzi/ dpp _P2 2P4—P2 . 3.53
I'(D/2) Jo ’ I'(D/2) Jo
Since P» =28, for 2 < D < 6 we can use (3.24) and (3.25) to get
47 D/2

Ey= ———=(D —2)s;. 54

The numerical values of s1, Ey and Eq7 for D = 3,4,5 are listed in table 2. To the
calculated order, i.e. up to €577, for D = 3 and D = 4 the energy is a monotonically
increasing function of e, while for D = 5 there is an energy minimum at ¢ = 0.2288. This
result can only be taken as an estimate, as the validity domain of an asymptotic series ends
when two subsequent terms are approximately equal.

For D = 6 the leading order term in the total energy is

19273
As we have already noted, for D > 6 there are no finite energy solutions.

The leading order ¢ dependence of the dilaton charge for 2 < D < 6 is given by
Q= s1e*t P, (3.56)

where we used the definition (2.7), (3.24) and the relation p = er. The dilaton charge for
the D = 6 oscillon is infinite. In higher orders in € the proportionality between the dilaton
charge and energy is violated.
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Figure 3. Total energy of three-dimensional oscillons as a function of the parameter ¢.

4 Time evolution of oscillons

In this section we employ a numerical time evolution code in order to simulate the actual
behaviour of oscillons in the scalar-dilaton theory. We use a fourth order method of line code
with spatial compactification in order to investigate spherically symmetric fields [46]. Our
aim is to find configurations which are as closely periodic as possible. To achieve this, we
use initial data obtained from the leading €2 terms of the small amplitude expansion (3.39)
and (3.40). The smaller the chosen ¢ is, the more closely periodic the resulting oscillating
state becomes. However, for moderate values of ¢, it is possible to improve the initial data
by simply multiplying it by some overall factor very close to 1.

The main characteristics of the evolution of small amplitude initial data depend on
the number of spatial dimensions D. For D = 3 and D = 4 oscillons appear to be stable.
If there is some moderate error in the initial data, it will still evolve into an extremely long
living oscillating configuration, but its amplitude and frequency will oscillate with a low
frequency modulation. We employ a fine-tuning procedure to minimize this modulation
by multiplying the initial data with some empirical factor. For D =5 and D = 6 small
amplitude oscillons are not stable, having a single decay mode. In this case we can use the
fine-tuning method to suppress this decay mode, and make long living oscillon states with
well defined amplitude and frequency. Without tuning in D = 5 and D = 6, in general,
an initial data evolves into a decaying state. The tuning becomes possible because there
are two possible ways of decay. One with a steady outwards flux of energy, the other is
through collapsing to a central region first.

Having calculated several closely periodic oscillon configurations, it is instructive to
see how closely their total energy follow the expressions (3.52)—(3.55). Apart from checking
the consistency of the small amplitude and the time-evolution approaches, this also gives
information on how large e values the small amplitude expansion remains valid. The
parameter ¢ for the evolving oscillon is calculated from the numerically measured frequency
by the expression € = v/1 — w2. The results for D = 3 are presented on figure 3. In contrast
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Figure 4. Total energy of five-dimensional oscillons as a function of the parameter . The vertical
line at € = 0.21 shows the place of the energy minimum. States to the right of it are stable, while
those to the left have a single decay mode.
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Figure 5. The region of figure 4 near the energy minimum.

to general relativistic oscillatons, there is no maximum on the energy curve. This indicates
that all three dimensional oscillons in the dilaton theory are stable.

The e dependence of the energy for D = 5 is presented on figure 4. There is an
energy minimum of the numerically obtained states, approximately at ¢ = 0.21, above
which oscillons are stable. The place of the minimum agrees quite well with the value
e = 0.2288 calculated in subsection 3.6 using the first two terms of the small amplitude
expansion. The behaviour of the energy close to the minimum is shown on figure 5. We
have also constructed oscillon states for D = 6 dimensions. These oscillons have quite large
energy, due to the slow spatial decay of the functions ® and ¢. For free massive scalar
fields, oscillons have frequency given by (3.51), i.e. an initial data with a given ¢ value will
evolve to an oscillon state with frequency approximately following w = v/1 — e%. However,
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Figure 6. Increase in the difference of the dilaton field ¢ for two similar configurations.

there are potentials, for which the oscillation frequency is above the threshold w = 1. For
example, this happens for the potential U(®) = ®2(® — 2)2/8 with the choice x = 1/2.

In conclusion, in the dilaton-scalar theory oscillons follow the stability pattern observed
in the case of self-interacting scalar and Einstein-Klein-Gordon theory; if ¢ decreases with
decreasing energy, oscillons are stable, while if £ increases with decreasing energy, oscillons
are unstable. In other words if the time evolution (i.e. energy loss) of an oscillon leads to
spreading of the core, the oscillon is stable, while oscillons are unstable, if they have to
contract with time evolution. The decreasing or increasing nature of the energy, and hence
empirically the stability of the oscillating configurations, is well described by the first two
terms of the small amplitude expansion (3.52). The result following from eq. (3.52) shows
the existence of an energy minimum for D > 4. This provides an analytical argument for
the existence of at least one unstable mode. In particular, for D = 5 spatial dimensions the
frequency separating the stable and unstable domains is determined by the small amplitude
expansion to satisfactory precision.

In order to study the instability in more detail numerically, we compared the evolution
of two almost identical initial data obtained from the small amplitude expansion with
€ = 0.05. In order to make the unstable state long living, a fine tuning procedure is applied,
multiplying the amplitude of the initial data by a factor with value close to 1.0178. The
multiplicative factors used in the two chosen initial values differ by 2.2 x 1076, One of
the two initial data develops into a configuration decaying with a uniform outward current
of energy, the other through collapsing to a high density state first. On figure 6 the time
evolution of the difference of the central value of the dilaton fields in the two states Ay =
1 — o is shown. The curve follows extremely well the exponential increase described by

Ap = 6.583 x 10710 exp(0.003157¢) (4.1)

showing that there is a single decay mode growing exponentially. The difference of the
scalar fields, A® = & — $,, grows with the same exponent. The spatial dependence of the
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Figure 7. Radial behaviour of the difference of the scalar fields of two very similar configurations.
At the chosen moments of time the scalar is maximal at the center, and the subsequent moments
are separated by 32 oscillations.

decaying mode is illustrated on figure 7, where A® is plotted at several moments of time
corresponding to the maximum of ®; at the center.

Our numerical results strongly indicate that oscillons in the scalar-dilaton theory are
unstable for D > 4, and they admit a single decay mode. For the single scalar field
system the instability arises for D > 2 (see ref. [31]), but the decay modes have been
calculated analytically only in some very special cases. The scalar theory with potential
U(¢) = ¢*(1 — In¢?) admits exactly time-periodic breathers in any dimensions. The
stability of these breathers in three dimensions has been investigated in detail in [47, 48].
It has been found that these breathers always admit a single unstable mode. It needs
further studies whether an analysis along the lines of ref. [47] can also be applied to more
general potentials in the small amplitude limit, and whether it can be generalized to the

case when the scalar is coupled to a dilaton field.

5 Determination of the energy loss rate

Although oscillons are extremely long living, generally they are not exactly periodic. In
this section we calculate how the energy loss rate depends on the oscillon frequency for
small amplitude configurations. To simplify the expressions in this section we consider a
massive free scalar field, i.e. U(®) = m2®2/2. We assume that 2 < D < 6, since then the
scalar field tends to zero exponentially for large p.

The outgoing radiation will dominantly be in the dilaton field and the radiation am-
plitude will have the ¢ dependence: ¢ exp (—2Q@Qp/c). In refs. [30] and [31] we have used
two different methods for determining the € independent part of the radiation amplitude:
Borel summation and solution of the complexified mode equations numerically. In this
paper we will use an analytic method based on Borel-summing the asymptotic series in the
neighborhood of its singularity in the complex plane. Other potentials which are symmet-
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D] @p

3| 3.97736
4 | 2.30468
5 | 1.23595

Table 3. The distance (Qp between the real axis and the pole of the fundamental solution of the
SN equation for various spatial dimensions D.

ric around their minima can be treated analogously. If the potential is asymmetric only
the numerical method could be used. This phenomenon is in complete analogy with the
problem arising with a single scalar field considered in ref. [30].

5.1 Singularity of the small ¢ expansion

We first investigate the complex extension of the functions obtained by the small ampli-
tude expansion in section 3. Extending the solutions s and S of the Schrédinger-Newton
equations (3.19) and (3.20) to complex p coordinates they both have pole singularities on
the imaginary axis of the complex plane. We consider the closest pair of singularities to
the real axis, since these will give the dominant contribution to the energy loss. They are
located at p = +iQp. The numerically calculated values of QQp are listed in table 3 for
spatial dimensions D = 3,4,5. Let us measure distances from the upper singularity by a
coordinate R defined as

p=1Qp+R. (5.1)
Close to the pole we can expand the SN equations, and obtain that s and S have essentially

the same behaviour,
6 6i(D—-1) (D-1)(D-51)
=+5=—-— — - O(R 5.2
’ R~ 5QpR gy, oW (5:2)

even though they clearly differ on the real axis. Since for symmetric potentials we can

always substitute ® by —®, we choose the positive sign for S in (5.2). This choice is
compatible with the sign of S used on the real axis at the small amplitude expansion
section. We note that for D > 1 there are logarithmic terms in the expansion of s and 5,
starting with terms proportional to R*In R. According to (3.18), the functions determining
the leading €2 parts of ¢ and ® in this case are

pp=s+1, Py=2S. (5.3)

Substituting these into the equations (3.36) and (3.37), the £* order contributions ps and
P, can also be expanded around the pole

1161 324i(D — 1)In R c_s In R
_— e O el 5.4
PA= ToRa 35Qp R3 R3 ( R ) (54)
81 18i(D - 1) 1
Pi=2pi = it 5o, O (ﬁ) ’ (5:5)

where the constant c_3 can only be determined from the specific behaviour of the functions

on the real axis, namely from the requirement of the exponential decay of P for large real p.
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5.2 Fourier mode expansion

Since all terms of the small amplitude expansion (3.1) are asymptotically decaying, i.e.
localized functions, the small amplitude expansion can be successfully applied to the core
region of oscillons. However it cannot describe the exponentially small radiative tail re-
sponsible for the energy loss. Instead of studying a slowly varying frequency radiating
oscillon configuration it is simpler to consider exactly periodic solutions having a large
core and a very small amplitude standing wave tail. We look for periodic solutions with
frequency w by Fourier expanding the scalar and dilaton field as

Np N
o= Z Uy, cos(kwt) , Y= Z Yy, cos(kwt) . (5.6)
k=0 k=0

Although, in principle, the Fourier truncation order Ng should tend to infinity, one can
expect very good approximation for moderate values of Np. In (5.6) we denoted the
Fourier components by psi instead of phi to distinguish them from the small € expansion
components in (3.1). Since in this section we only deal with an self-interaction free scalar
field with a trivially symmetric potential,

Wy, =0, Yopr1 =0, for integer k . (5.7)

We note that the absence of sine terms in (5.6) is equivalent to the assumption of time
reflexion symmetry at ¢ = 0. This assumption appears reasonable physically, and we have
seen in section 3 that it holds in the small amplitude expansion framework.

For small amplitude configurations we can establish the connection between the ex-
pansions (3.1) and (5.6) by comparing to (3.39) and (3.40), obtaining

Uy = 2Py +e*Py+ 5P + O(EY) (5.8)
P3
Uy =2+ 0 5.9
3 =22+ O, (5.9)
Yo = e%pa + elpy + Opg + O(e8) (5.10)
P2 1 dP,\ 2

41472 6 2 2 8
= 2 _ S5 4p,Py— (py — )P — | == O ) 5.11
() €16 ~ ¢ 33 |42 (p2 — 1) P (dR) +O(e%) (5.11)

Let us define a coordinate y for an “inner region” by R = ey. This coordinate will
have the same scale as the original radial coordinate r, since they are related as

iQ

eD +y. (5.12)

T =

The “inner region” |R| < 1 is not small in the y coordinate; if ¢ — 0 then e|y| = |R| < 1
but |y| — co. Using the coordinate y and substituting (5.2)—(5.5) into the small amplitude
Fourier mode expressions (5.8)—(5.11), we obtain that the leading asymptotic behaviour of

,18,



the Fourier modes for |y| — oo can be written as

v _1_3 - £94 1, L 548i(D — 1)

y? 26y 35Qpy?

e [Lég;yl) (% + 10%1;13/ - 2> + 2253} T (5.13)
\113:—42—;—6%4—..., (5.14)
=G IO O =)

e [Giég;yl) (%;y - 1> + Cy—;’] +o, (5.15)
¢2:—%—6%+.... (5.16)

These expressions are simultaneous series in 1/y and in e.

5.3 Fourier mode equations

In order to obtain finite number of Fourier mode equations with finite number of terms,
when substituting (5.6) into the field equations (2.5) and (2.6) we Taylor expand and
truncate the exponential

| —

(—o)* . (5.17)

Ne
e ¥ = E
k=0

We need to carefully check how large N, should be chosen to have only a negligible influence

o

!

to the calculated results. For n < Np the Fourier mode equations have the form

> D-1d
<@+—T 5‘1‘712012—1) v, = n; (5'18)

<d2 D—-14d

a U-1 2 2 _
d7“2+ . dr+nw>w" I, (5.19)

where we have collected the nonlinear terms to the right hand sides, and denoted them with
F,, and f,. These are polynomial expressions involving various ¥ and v, with quickly
increasing complexity when increasing the truncation orders Np and N.. The solution
of (5.18) and (5.19) yields the intended quasibreathers, with a localized core and a very
small amplitude oscillating tail. For small amplitude configurations the functions ¥; and
. will have poles at the complex r plane, just as we have seen in the small amplitude
expansion formalism. In order to calculate the tail amplitude it is necessary to investigate
the Fourier mode equations instead of the equations obtained in section 3. Although in
the Fourier decomposition method we have not defined a small amplitude parameter yet,
motivated by (3.30), we can, in general, define ¢ as

e=v1—-w?. (5.20)
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Dropping O(£?) terms, in the neighborhood of the singularity the mode equations take

d2 D—14d
< U, = F,. 21
<dy2+ 05 a " > (5.21)

d? D—-1d
A

We look for solutions of these equations that satisfy (5.13)—(5.16) as boundary conditions

the form

for |y| — oo for —m/2 < argy < 0. This corresponds to the requirement that the functions
decay to zero without any oscillating tails for large r on the real axis. The small correction
corresponding to the nonperturbative tail of the quasibreather will arise in the imaginary
part of the functions on the Rey = 0 axis.

5.4 ¢ — 0 limit near the pole

For very small ¢ values one can neglect the terms proportional € on the left hand sides
of (5.21) and (5.22). In this limit the there is no dependence on the number of spatial
dimensions D. We investigate this simpler system first, and consider finite but small &
corrections later as perturbations to it. We expand the solution of (5.21) and (5.22) (with
e =0) in even powers of 1/y,

[o@)
Vopt1 = Z A2k+1 pop, = Z éjk) 5 - (5.23)
j=k+1 imkr1 Y

We illustrate our method by a minimal system where radiation loss can be studied, namely
the case with Np = 3 and N, = 1. Then the mode equations are still short enough to print:

d? 1 1
T Lo DO+ B+ gt (0 4 20), (5.24)
d*v 1
_dy21 = —tho¥1 = 5¥2 (V1 + U3), (5.25)
d2¢2 1 1 9 9
d 5 + 4¢2 = Z\I’l(wo — 1)(‘1’1 + 2\1’3) + Z¢2(\II1 + \1’1\1’3 + \1/3) , (526)
>y 1
dy — + 805 = —5¥2¥1 —Yo¥s. (5.27)

When looking for solution of these equations in the form of the 1/y? expansion (5.23), only

one ambiguity arises, the sign of Aél). Choosing it to be negative, the first few terms of

the expansion turn out to be

6 837 1
__6 S 2
=2 o +o( ) (5.28)

U, = —;‘/—3 ( ) (5.29)
).

9 1845 1
b= -5+ 0 (5.30
27 2565 1
Uy = — —_— — . 31
3=~ 15~ 16,8 +(9< 0) (5.31)
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Np | N k

5 3.71 x 1073
3.12 x 107
8 6.03 x 107
10 4.61 x 10713

S O = W
N

Table 4. Dependence of the constant k£ on the considered Fourier components Np. The second
column lists the minimal exponential expansion order N, which is necessary to get the £ value with
the given precision.

The first terms agree with those of (5.13)—(5.16) obtained by the small amplitude expan-
sion. The difference in the 1/y* terms of ¢y and ¥ are caused by the too low truncation
for the Taylor expansion of the exponential. For N, > 2 these terms agree as well.

When increasing Ny and N, growing number of additional terms appear on the right
hand sides of (5.24)-(5.27), and the number of mode equations rise to Ng + 1. These
complicated mode equations can be calculated and 1/y? expanded using an algebraic ma-
nipulation program. However, apart from a factor, the leading order behaviour of the
coeflicients agn) and Aén) for large n will remain the same as that of the minimal sys-
tem (5.24)—(5.27). The large n behaviour of these coefficients will be essential for the
calculation of the nonperturbative effects resulting in radiation loss for oscillons.

Starting from the free system, consisting of the linear terms on the left hand sides, it
is easy to see that the mode equations are consistent with the following asymptotic (large
n) behavior of the coefficients,

— 1)

o, A, A <« oV (5.33)

(5.32)

where k is some constant. The value of k can be obtained to a satisfactory precision
by substituting the 1/y expansion into the mode equations and explicitly calculating the
coefficients to up to high orders in n. In practice, using an algebraic manipulation software,
we have calculated coefficients up to order n = 50. The dependence of k£ on the order of the
Fourier expansion is given in table 4. The results strongly indicate that in the Ny, N, — oo
limit £ = 0. We do not yet understand what is the deeper reason or symmetry behind this.
Hence, instead of (5.32) and (5.33), the correct asymptotic behavior is

2n —1)!

AP ~ K (—1)" o (5.34)
al”, A" oM <« Al (5.35)

Taking at least Np = 6 and N, = 9, the numerical value of the constant turns out to be
K = —0.57 £ 0.01. The above results indicate that the outgoing radiation is in the W3
scalar mode instead of being in the o dilaton mode. This conclusion is valid only in the
framework of the approximation employed in the present subsection, i.e. when dropping
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the terms proportional to ¢ in (5.21) and (5.22). As we will see in the next subsection, the
situation will change to be just the opposite when taking into account e corrections.

All terms of the expansion (5.23) are real on the imaginary axis Rey = 0. However,
using the Borel-summation procedure it is possible to calculate there an exponentially
small correction to the imaginary part. We will only sketch how the summation is done,
for details see [30] and [37]. We illustrate the method by applying it to Ws. The first step
is to define a Borel summed series by

V(z) = i ég))! 22"~ iK (_2}1)" (%)M = —g In <1 + %2> : (5.36)

n=2 n=2

This series has logarithmic singularities at z = #+iy/8. The Laplace transform of V(z) will
give us the Borel summed series of W3(y) which we denote by Ws5(y)

Ts(y) = /OOO dte 'V (5) : (5.37)

The choice of integration contour corresponds to the requirement of exponential decay on
the real axis. The logarithmic singularity of V (¢/y) does not contribute to the integral
and integrating on the branch cut starting from it yields the imaginary part

= o K K
Im U3(y) = / dtet=L =28 exp <—Z\/§y) . (5.38)
A similar calculation for the 1 dilaton mode yields
~ km ]
Im s (y) = 5 exXP (—2dy) . (5.39)

Since k£ = 0, this mode is vanishing now. However, as we will show in the next subsection,
when taking into account order € corrections a similar expression for ¢9 with exp (—2iy) be-
haviour arise, which, due to its slower decay, will become dominant when Imy — —oo. The
continuation to the real axis of these imaginary corrections turns out to be closely related
to the asymptotically oscillating mode responsible for the slow energy loss of oscillons.

5.5 Order ¢ corrections near the pole

Before discussing the issue of matching the imaginary correction calculated in the neigh-
borhood of the singularity to the solution of the field equation on the real axis we deal with
the corrections arising when taking into account the terms proportional to ¢ in the mode
equations (5.21) and (5.22). We denote the solutions obtained in the previous subsection
by ZZ)SLO) and \I’S)), and linearize the mode equations around them by defining

Un =00 + 4, =00+, (5.40)
The mode equations take the form
d? ~  D-1dyy Ofn Ofn 5
<d2+n>¢ +€ZQD a Zawm¢ +Z (5.41)
& + 1) ¥, 421 av,” Z ¢ +Z (5.42)
n? — n . )
dy ZQD dy 31/1m
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where the partial derivatives on the right hand sides are taken at ¥,, = \I’%O) and v, = ,(10).

The small dimensional corrections {/;n and \Tfn have parts of order both eIlne and e.
The linearized equations (5.41) and (5.42) are solved to elne order by the follow-

ing functions:

~ Ay

Y =elneC Tt (5.43)

_ (0)

T, = ¥ (5.44)
Y

where C' is an arbitrary constant. The reason for this is quite simple: in €Ine order the
terms proportional to € on the left hand sides are negligible and we get the € = 0 equation
linearized about the original solution. Our formula simply gives the zero mode of this
equation. The constant C is determined by the appropriate behaviour when continuing
back our functions to the real axis. This can be ensured by requiring agreement with the
first few terms of the small amplitude expansion formulae (5.13)—(5.16), yielding

27i(D — 1)

“="350,

(5.45)

In the small amplitude expansion (5.13)—(5.16) to every term of order ¢ In e corresponds
a term of order £ which we get by changing Ine to Iny. Thus, we define the new variables
1, and ¥, to describe the € order small perturbations by

~ (0) (0)

Yy, = alnaCdz)y (C Iny dd ) (5.46)

~ dwy SR

v, = 1 v, . 4
n " +a<Cny o T (5.47)

Substituting into the linearized equations (5.41) and (5.42) we see that all terms containing

Iny cancel out,

42 a2y gy ~1 dw f, fn
<d—y2+n )wﬁ_ ( dy? dy = iQp Z ¢m+z

(5.48)
2 , \= cf @v? aw®\ p-1 d\I/
4?1 ) Tt — 2 - : E: E:
<dy2+n > % ( o T ay )T ¢m+

(5.49)

If C is given by (5.45), ¢,, and ¥, turn out to be algebraic asymptotic series which are
analytic in y. Let us write their expansion explicitly:

00
_ — 1
\I’2k+1 = Z B2k+1 2n 1> 1/}2k = Z bg]z) on—1 " (550)
n=k+1 n=k+1 Y
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Substituting these and the expansions (5.23) for ¢,(10) and ¥\ into (5.48) and (5.49), it is
possible to solve for the coeflicients bén) and B,gn), up to one free parameter. Comparing

to (5.13)—(5.16) it is natural to choose this free parameter to be b(()2)

= c_3. Similarly to
that case, bgf) will only be determined by the requirement that the extension to the real
axis represent a localized solution. Furthermore, leaving C' a free constant and requiring
the absence of logarithmic terms in the expansion of ¥, and U, yields exactly the value of
C given in (5.45).

Eq. (5.48) is consistent with the asymptotics

" ~ikp (—1)" % [1 +0 (%)] : (5.51)

where kp is some constant. Since the leading order result for Agn) is given by (5.34), if

kp # 0, the coefficients follow the hierarchy bé") > Aénil). In order to be able to extract
the value of kp we have calculated bgn) by solving the mode equations to high orders in

1/y, obtaining
D-1
®@p
The displayed four digits precision for kp can be relatively easily obtained by setting
Np >4, N, > 5 and calculating) b;n) to orders n (2)25. We note that there is also a term
n

= c_3 in each b; 7, giving a c_3 dependent kp. Luckily,
the influence of this term to kp quickly becomes negligible as Ny and N, grow, making

kp = 1.640 (5.52)

proportional to the unknown béZ

the concrete value of ¢_g irrelevant for our purpose.

The Borel summation procedure can be done similarly as in egs. (5.36)—(5.38). On the
imaginary axis 1 is real to every order in 1/y, however it gets a small imaginary correction
from the summation procedure given by

~ kpm .
Imyn(y) =¢ % exp (—2iy) . (5.53)
5.6 Extension to the real axis

Solutions of the Fourier mode equations (5.18) and (5.19) can be considered to be the sum
of two parts. The first part corresponds to the result of the small amplitude expansion,
the second to an exponentially small correction to it. The small amplitude expansion is an
asymptotic expansion, it gives better and better approximation until reaching an optimal
order, but higher terms give increasingly divergent results. The smaller ¢ is, the higher the
optimal truncation order becomes, and the precision also improves. The small amplitude
expansion procedure gives time-periodic localized regular functions to all orders, charac-
terizing the core part of the quasibreather. Their extension to the complex plane is real on
the imaginary axis. Furthermore, the functions obtained by the € expansion are smooth on
large scales, missing an oscillating tail and short wavelength oscillations in the core region.
On the imaginary axis, to a very good approximation, the small second part of the solution
of the mode equations (5.18) and (5.19) is pure imaginary, and satisfies the homogeneous
linear equations obtained by keeping only the left hand sides of these equations, because
the quasibreather is a small-amplitude one. In the “inner region” it is of order 1/y?, while
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on the real axis its amplitude is of order £2, hence to leading order the quasibreather
core background does not contribute. In the previous subsection we have determined the
behaviour of this small correction close to the poles. Now we extend it to the real axis.

In the “inner region”, close to the pole, the function Ims given by (5.53) solves
the homogeneous linear differential equations given by the left hand side of (5.22). The
extension of this function to the real axis will provide the small correction to the small
amplitude result mentioned in the previous paragraph. We intend to find the solution 152
of the left hand side of (5.19), which reduces to the value given by (5.53) close to the upper
pole, where r = iQp/e + y, and behaves as

Im s (y) = —¢ k:DT?T exp (2iy) . (5.54)

near the lower pole, where r = —iQp/e +y. We follow the procedure detailed in [31]. The
resulting function for large r is

. (D-1)/
(05 zeszW <QD> exp (—QQ?D> [i(l}l)ﬂ exp(—2ir)— (—i) P~/ exp(QiT)] . (5.55)

2 er

The general solution of the left hand side of (5.19) can be written as a sum involving Bessel
functions J,, and Y,,, which have the asymptotic behaviour

2 vmw

Jy(.%') — E COS (1’ — 7 — Z) s (556)
2 . vm o

YV(IE) — g S1n (IE - 7 - Z) 5 (557)

for £ — +00. The solution satisfying the asymptotics given by (5.55) is

T D/2 —Lvp(2r), (5.58)

where the amplitude at large r is given by

(D-1)/2
ap =enkp <%> exp <—2Q?D> . (5.59)

For D > 2 the function given by (5.58) is singular at the center, due to the usual central
singularity of spherical waves. Since the amplitude of the quasibreather core is proportional
to €2, and its size to 1/, for small ¢ it is possible to extend the function {p\g in its form (5.58)
to the real axis into a region which is outside the domain where 122 gets large, but which
is still close to the center when considering the enlarged size of the quasibreather core.
When extending this function further out along the real r axis, because of the large size of
the quasibreather core, the nonlinear source terms on the right hand side of (5.19) are not
negligible anymore, and the expression (5.58) for 122 cannot be used. What actually happens
is that 122 tends to zero exponentially as r — oo. This follows from the special choice of
the “inner solution” close to the singularity; namely, we were looking for a solution which
agreed with the small amplitude expansion for Rey — oo. The small amplitude expansion
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gives exponentially localized functions to each order and we also required decay beyond all
orders when choosing the contour of integration in the Borel summation procedure.

By the above procedure we have constructed a solution of the mode equations which is
singular at » = 0. The singularity is the consequence of the initial assumption of exponential
decay for large r. The asymptotic decay induces an oscillation given by (5.58) in the
intermediate core, and a singularity at the center. In contrast, the quasibreather solution
has a regular center, but contains a minimal amplitude standing wave tail asymptotically.
Considering the left hand side of (5.19) as an equation describing perturbation around
the asymptotically decaying solution, we just have to add a solution d19 determined by
the amplitude (5.59) with the opposite sign of (5.58) to cancel the oscillation and the
singularity in the core. This way one obtains the regular quasibreather solution, whose
minimal amplitude standing wave tail is given as

e
¢op = —VT M%YD/%KQT) cos(2t) (5.60)
~_ 9D —(p-1nZ
R~ B S 2r — (D 1)4 cos(2t). (5.61)

Adding the regular solution, where Y is replaced by J, would necessarily increase the
asymptotic amplitude.

If we subtract the incoming radiation from a QB and cut the remaining tail at large
distances, we obtain an oscillon state to a good approximation. Subtracting the regular
solution with a phase shift in time, we cancel the incoming radiating component, and obtain
the radiative tail of the oscillon,

@ .
bosc = —\/T W% [Ypa—1(2r) cos(2t) — Jpja—1(2r) sin(2t)] (5.62)
~__ YD _ _nr_
~ — 5 D sin [2r (D-1)] 275] . (5.63)
The radiation law of the oscillon is easily obtained now,
dE 4rP2 , rQp\ P! 4Qp
— = k37 == - 5.64
dt DT F(%)6 <€> eXp< e >a ( )

where the constant kp is given by (5.52). If we assume adiabatic time evolution of the
parameter determining the oscillon state, using egs. (3.52) and (3.54) giving E as a function
of €, we get a closed evolution equation for small amplitude oscillons, determining their
energy as the function of time.

For the physically most interesting case, D = 3 we write the evolution equation for e
and its leading order late time behavior explicitly:

de

15.909
£ 302 - :
¥ 30.29 exp ( . > (5.65)
15.909 1401.6
- B~ _ (5.66)
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